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Abstract 

The Comprehensive Test Ban Treaty of 1996 banned any future nuclear explosions or testing of nuclear 
weapons and created the CTBTO in Vienna to implement the treaty.  The U.S. response to this was the 
cessation of all above and below ground nuclear testing. As such, all stockpile reliability assessments are 
now based on periodic testing of subsystems being stored in a wide variety of environments.   

This data provides a wealth of information and feeds a growing web of deterministic, physics-based 
computer models for assessment of stockpile reliability.  Unfortunately until 1996 it was difficult to relate 
the deterministic materials aging test data to component reliability. Since that time we have made great 
strides in mathematical techniques and computer tools that permit explicit relationships between materials 
degradation, e.g. corrosion, thermo -mechanical fatigue, and reliability.  The resulting suite of tools is 
known as CRAX and the mathematical library supporting these tools is Cassandra . 

However, these techniques ignore the historical data that is also available on similar systems in the nuclear 
stockpile, the DoD weapons complex and even in commercial applications.  Traditional statistical 
techniques commonly used in classical re liability assessment do not permit data from these sources to be 
easily included in the overall assessment of system reliability.  An older, alternative approach based on 
Bayesian probability theory permits the inclusion of data from all applicable sources.  Data from a variety 
of sources is brought together in a logical fashion through the repeated application of inductive 
mathematics. 

This research brings together existing mathematical methods, modifies and expands those techniques as 
required, permitting data from a wide variety of sources to be combined in a logical fashion to increase the 
confidence in the reliability assessment of the nuclear weapons stockpile.  

The application of this research is limited to those systems composed of discrete components, e.g. those 
that can be characterized as operating or not operating.  However, there is nothing unique about the 
underlying principles and the extension to continuous subsystem/systems is straightforward. The 
framework is also laid for the consideration of systems with multiple correlated failure modes.  While an 
important consideration, time and resources limited the specific demonstration of these methods.  
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A Hierarchical Bayes Approach  
to System Reliability Analysis 

Abstract 
The Comprehensive Test Ban Treaty of 1996 banned any future nuclear explosions or 
testing of nuclear weapons and created the CTBTO in Vienna to implement the treaty.  
The U.S. response to this was the cessation of all above and below ground nuclear 
testing. As such, all stockpile reliability assessments are now based on periodic testing of 
subsystems being stored in a wide variety of environments.   

This data provides a wealth of information and feeds a growing web of deterministic, 
physics-based computer models for assessment of stockpile reliability.  Unfortunately 
until 1996 it was difficult to relate the deterministic materials aging test data to 
component reliability. Since that time we have made great strides in mathematical 
techniques and computer tools that permit explicit relationships between materials 
degradation, e.g. corrosion, thermo-mechanical fatigue, and reliability.  The resulting 
suite of tools is known as CRAX and the mathematical library supporting these tools is 
Cassandra. 

However, these techniques ignore the historical data that is also available on similar 
systems in the nuclear stockpile, the DoD weapons complex and even in commercial 
applications.  Traditional statistical techniques commonly used in classical reliability 
assessment do not permit data from these sources to be easily included in the overall 
assessment of system reliability.  An older, alternative approach based on Bayesian 
probability theory permits the inclusion of data from all applicable sources.  Data from a 
variety of sources is brought together in a logical fashion through the repeated application 
of inductive mathematics. 

This research brings together existing mathematical methods, modifies and expands those 
techniques as required, permitting data from a wide variety of sources to be combined in 
a logical fashion to increase the confidence in the reliability assessment of the nuclear 
weapons stockpile.  

The application of this research is limited to those systems composed of discrete 
components, e.g. those that can be characterized as operating or not operating.  However, 
there is nothing unique about the underlying principles and the extension to continuous 
subsystem/systems is straightforward. The framework is also laid for the consideration of 
systems with multiple correlated failure modes.  While an important consideration, time 
and resources limited the specific demonstration of these methods. 

Background 

Problem 
Current techniques and analysis tools used to assess stockpile reliability do not permit the 
mixture of data from system, subsystem, component, etc. level tests.  The methods used 
depend exclusively on full scale testing for system reliability evaluation and ignore 
stockpile historical data, commercial product history and the judgment of engineering 
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designers.  There is a need to be able to focus testing on those subsystems where there 
will be the largest return for testing dollars.  In this case, return on investment is defined 
as an increased confidence in stockpile reliability.  ‘Focused’ testing such as this requires 
a trade-off between the amounts of testing at the subsystem level versus testing at the 
system level.  In addition, optimal development of test plans requires consideration of the 
time dependent nature of material properties (corrosion, thermo-mechanical fatigue, etc.), 
costs of manufacturing and testing unique subsystems or components, the historical data 
on similar systems (commercial and stockpile), and statistically dependent failure modes.  
Fundamental mathematical techniques exist in the open literature to address some of 
these issues and have been implemented in various software tools throughout Sandia.  
However, existing techniques and software tools do not address the critical issues of time 
dependent performance degradation and statistically dependent failure modes.  Nor do 
they consider the optimal allocation of test resources.  More detailed investigation of 
these methods will be necessary before a final conclusion can be reached. 

Solution Approach 
This research is focused on the use of Bayesian methods as the fundamental 
mathematical tool for addressing the problem raised above.  Particular concerns in testing 
complex systems are the high costs of testing and making accurate predictions regarding 
performance through the maximum use of all available information.  This information 
might include, for example, engineering experience on similar systems or experimental 
data. 

To appreciate why a Bayesian approach has been taken, consider the problem of a bag 
containing 5 red balls and 7 green balls (Jaynes 1989).  On a particular draw we choose a 
ball, with probability 5/12 and 7/12 of picking a red or a green ball respectively.  If, after 
the initial selection, the ball is not returned to the bag, then the chances of picking either a 
green or red ball on the next selection depends on the prior selection.  On the other hand, 
if no information regarding the result of the first selection is available and a green ball is 
chosen on the second draw, what can be said about the probability of choosing a red or 
green ball on the first pick?  Intuition suggests the results of the second selection should 
not influence the probability of choosing a red or green ball on the first draw.  However, 
before answering this, consider the situation where there are only 1 red and 1 green ball 
in the bag.  Clearly, the information available as a result of the second draw influences 
the guess as to the first selection.  It is this use of information in a conditional manner 
that provides additional insight into problems not otherwise possible and is the key to a 
Bayesian approach to test plan design and data analysis. 

Why Bayes Methods for Stockpile Assessment? 
From 1945 to 1963 the reliability of the U.S. nuclear stockpile was guaranteed through a 
series of atmospheric tests.  After the 1963 Limited Test Ban treaty testing by the U.S., 
Russia and the United Kingdom was conducted underground.  Finally, the 
Comprehensive Test Ban Treaty of 1996 banned any future nuclear explosions, testing of 
nuclear weapons, or any other nuclear explosions and created the CTBTO in Vienna to 
implement the treaty.  As such, all stockpile reliability assessments are now based on 
assessment of subsystems being stored in a wide variety of environments.   
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However, in addition to these tests, as the stockpile is brought in for aging and 
surveillance inspection, data is collected on materials degradation, component 
performance drift, etc. .  The limited test and inspection data that is available provides a 
wealth of information for assessment purposes.  These test results feed a growing web of 
complex physics-based computer models for assessment of stockpile reliability.  Until 
approximately 1996, it was difficult to relate the deterministic materials aging test data to 
component reliability.   At that time efforts were initiated to develop a suite of 
mathematical techniques and computer tools that would permit an explicit relationship to 
be explored between materials degradation, e.g. corrosion, thermo-mechanical fatigue, 
and reliability.  This suite of tools is referred to as CRAX and the mathematical library 
that supports these tools is Cassandra. 

However, in addition to explicit experimental testing of material properties, an abundance 
of historical data is available on similar systems in the nuclear stockpile, the DoD 
weapons complex and even in commercial applications.  Unfortunately traditional 
statistical techniques commonly used in classical reliability assessment do not permit data 
from these sources to be included in the 
overall assessment of system reliability.  
A Bayesian approach to reliability 
assessment permits the inclusion of data 
from all applicable sources.  The data is 
brought together in a logical fashion 
through the repeated application of 
inductive mathematics. 

To understand the usefulness of the 
Bayesian approach and the impact on the 
test programs being conducted, it is best 
to examine a very simple example that, in 
an abstract fashion, contrasts the current 
method of stockpile evaluation with a 
very simple Bayesian perspective. 

Current Approach 
The assumptions used in the section are 
based on those outlined in the white paper entitled Analysis of Stockpile Sampling 
Strategies, by S. Crowder and E. Collins, 4 May 2000.  The distribution of subpopulation 
fractions was adjusted slightly to assure that the fraction total was unity.  

Assumptions (see Figure 1) 
1. The general population has an overall defect rate of    p1 .  All of the defects 

associated with this rate will be lumped together and labeled as failure mode A.  
The fraction of the population with only failure mode A is     f1 

2. A certain fraction of the population,     f2 , has an additional inherent failure mode B, 
that occurs with rate     p2 .  This fraction of the population can experience both 
failure modes A and B. 

 
 

Figure 1. Sample Parameters  
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3. A third fraction of the population,     f3 , has an additional unknown failure mode C, 
that occurs with rate     p3 .  This fraction of the population can experience both 
failure modes A and C. 

4. These three population fractions are mutually exclusive and are representative of 
the dominant population failure modes.  

5. The failure modes are pair-wise independent. 
6. The current approach to sampling requires a sample of 11 systems to be randomly 

selected from the population each year.  No bias is introduced toward/away from 
selecting particular units; i.e. the sampling is not done in a stratified fashion. 

7. The population fractions are:     f1 = 0.80,     f2 = 0.10,     f3 = 0.10 and the assumed 
defect rates are:     p1 = p2 = p3 = 0.1. 

Selection of Sample 
Given a sample of N units from the stockpile, there is a certain probability that the 
sample will be composed of     n1,    n2  and     n3  samples from the three fractions (where 

    N = n1 + n2 + n3 ).  The probability mass function of choosing a particular sample 
combination can be described with a multinomial distribution: 

    
P X1 = n1, X2 = n2 , X3 = n3( )=

N!
n1!n2!n3!

f1
n1 f 2

n2 f3
n3 .     (1) 

For example, the probability of selecting a sample composed of 8 units from the first 
population, 2 units from the second and 1 unit from the third can be calculated: 

P X1 = 8, X2 = 2, X3 = 1( )=
11!

8!2!1!
(0.80)8 (0.10)2 (0.10)1 = 0.083. 

The probability of not sampling from the second subpopulation in the first year (of a two 
year sampling interval) can be calculated to be 0.318 and the probability of not sampling 
from the third subpopulation is also 0.318.  The probability that the sample of 11 will not 
contain units from either subpopulation is 0.086.  Note that these numbers only relate to 
the probability that the overall sample will contain at least one unit from the 
subpopulations.  Even if the subpopulation is sampled, there is nonzero probability that 
no defects will be observed. 

Observation of Defects 
Given a sample of   ni  units, the probability of observing   si  successes or equivalently 

  di = ni − s i  defects is described by the binomial distribution: 

    
P Si = si | pi , N i = ni( )=

ni!
si!(ni − si )!

(1− pi )si ( pi)
ni −si     (2) 

for each subpopulation.  To calculate the probability of observing a defect(s) in a sample 
of N units, it is necessary to use the Theorem of Total Probability and convo lve Equations 
1 and 2:  

    
P(S i = si) = P Si = si | pi , N i = ni( )P X i = ni( )

ni =1

N

∑       (3) 
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where the marginal probability mass function is given by: 

    
P X i = ni( )= P X i = n i, X j = n j , X k = nk( )

nk =1

N

∑
nj =1

N

∑ .       (4) 

Care must be taken when calculating the probability of observing defects for each of the 
failure modes since the total number of samples is limited to a specified number, in this 
case 11.  Once the number of samples from two subpopulations is chosen,     ni , n j , the 
number of samples from the remaining subpopulation is determined:     nk = N − (ni + n j) .  

Since there will always be N=11 samples that can be used to detect failure mode A, the 
probability of observing   si  successes is governed entirely by Equation 2.  The probability 
of not observing a failure in the general population that can be traced to the common 
failure mode A can be calculated to be 0.314 and the expected number of years until a 
defect of type A is observed is 

  
1

(1− 0.314)
≈1.5 years .  This number is independent of 

whether targeted sampling is accomplished.   

Utilizing Equation 3, the probability of not observing a defect with a root cause 
attributable to failure mode B during a random year of testing is 0.895.  The probability 
of not observing failure mode C is also 0.895.  The expected number of years before 
observing at least one defect of failure type B is therefore:

  
1

(1− 0.895)
≈10 years . 

Similarly, the expected number of years before observing at least one defect related to 
failure type C is: 

  
1

(1− 0.895)
≈10 years . 

Alternatively, suppose a sample of 4 units is selected from a specific subpopulation, e.g. 
the subpopulation associated with failure mode B.  Then for that subpopulation, the 
probability of observing   si  successes is again governed entirely by Equation 2. The 
probability of not observing a defect in the general population that can be traced to the 
common failure mode B can be calculated to be 0.656 and the expected number of years 
until a defect is observed is 

  
1

(1− 0.656)
≈ 3 years .   

Considering that there now remain at most only 7 samples to detect failures for mode C, 
the probability of detecting a defect associated with failure mode C can be calculated by 
combining Equations 2 and 3.  The probability of not detecting a failure of type C is 
0.932 and it is expected to take 

  
1

(1− 0.932)
≈15 years  until a defect is observed.  

Of course, a major fault with this analysis is that assumption that you would continue 
targeting a particular segment of the population even after not observing a particular 
failure mode.  In reality, one would not continue sampling after there was sufficient 
confidence that the original hypothesis of a particular failure mode had been 
substantiated.  The natural question then arises: how does one measure this degree of 
confidence regarding the significance of a particular failure mode? 

Failure Mode A B C 
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Prob{detect defect in 1 yr} 0.686 0.105 0.105 

Expected time to detect defect (yrs) 1.5 10 10 

Table 1. Summary of Results for a Random Sample of 11 

 

Failure Mode A B C 

Prob{detect defect in 1 yr} 0.686 0.344 0.068 

Expected time to detect defect (yrs) 1.5 3 15 

Table 2. Summary of Results for a Targeted Samples of  
7 (subpopulation 2) and 4 (subpopulations 1 &3) 

Alternative approach 
In the following, an alternative approach is presented which explicitly accounts for data 
that might be available from various other testing activities.  While there is no substitute 
for full scale testing in a realistic operational environment, it is also difficult justify not 
considering data from all relevant sources. 

Assumptions  
The alternative approach is still consistent with assumptions depicted in Figure 1.  In the 
traditional approach outlined above, it was assumed that a particular subpopulation, e.g. 
B, would be targeted for sampling without any prior knowledge that a potential problem 
exists.  It was also assumed that this failure mode had an associated defect rate of     p2 , 
even though there was no knowledge that this failure mode exists.  

As with the traditional approach, it will be assumed that the number of success, s, 
observed in n trials is governed by the binomial probability mass function: 

 

 

P S = s | p,N = n( )= f (s | p) =
n!

s!(n − s)!
(1− p)n −s(p) s

   (5) 

However, in this alternative approach it 
will be assumed that the rate at which 
defects occur is a random variable, i.e. the 
true defect rate for each subpopulation is 
assumed to be unknown.  Based on 
information available prior to the sample 
generation and testing, the probability 
density functions are assumed to be 
characterized by a beta density function:   

 
Figure 2. Probability Density Functions  

of Defect Rates 
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g( p) =

Γ(n0)
Γ(s0 )Γ(n0 − s0 )

p s0 −1(1− p )n0 −s0 −1 0 ≤ p ≤ 1      (6) 

where: 
    
Γ(n ) = xn−1exp(− x)dx

0

∞

∫ , and     s0 ,     n0  are parameters of the distribution.  

After conducting a series of n tests and observing s successes, a new estimate of the 
defect rate can be calculated.  Bayes’ theorem provides a relationship between the new 
defect distribution (the posterior distribution) and the prior distribution (Equation 6): 

    

g( p | s ) =
f (s | p)g( p)

f (s | p )g ( p)dp
0

1

∫
=

f (s | p )g ( p)
f (s)

     (7) 

Given the assumption of a general beta density function as the prior distribution on defect 
rate and a binomial distribution on the number of successes, the posterior distribution is 
also a beta distribution: 

    
g( p | s ) =

Γ(n0 + n)
Γ(s + s0 )Γ(n0 + n− s0 − s)

p (s0 +s)−1(1− p) (n0 +n− s0 −s)−1 0 ≤ p ≤ 1 (8) 

Observation of Defects  
The probability mass function of the number of successes in n trials (considering all 
possible values of the defect rate predicted by the posterior distribution) is the beta-
binomial distribution: 

f (s) = f (s | p)g(p)dp
0

1

∫
=

n!Γ(n0)Γ(s0 + s)Γ(n0 + n − s0 − s)
s!(n − s)!Γ(n0 + n)Γ(s0 )Γ(n0 − s0)

0≤ s ≤ n
  (9) 

The function, f(s), can be used to calculate the probability of observing one or more 
defects in a sample of n units given the current test data and prior information on the 
underlying defect rate.   

For this example, it is assumed that during the surveillance program there were 23 tests 
conducted and 5 failures were observed related to failure mode B.  No failures have yet 
been observed for failure mode C.  These numbers can be modified to specifically 
address the testing that was accomplished for a particular component.   

The estimate of the number of years to detect a problem is greatly simplified and is based 
on not updating the failure/success information that is gathered during testing each year.   

 

Failure Mode A B C 

Prob{detect defect in 1 yr} 0.550 0.600 0.556 

Expected time to detect defect (yrs) 1.82 1.67 1.80 
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Table 3. Summary of Results for Targeted Samples of  
7 (subpopulation 2) and 4 (subpopulations 1 &3) 

Using Alternative Methodology 

Summary 
The use of condition-based logic – given this information then I expect these results – 
contrasts greatly with more popular approach – this exact situation has happened many 
times so I expect it will happen again, or equivalently – this has never happened before 
so it will never happen in the future.  The application of Bayesian methods and inductive 
reasoning in general, permits the analyst to provide answers to a variety of questions with 
increased confidence.   

The above very simple example demonstrated how, at no additional cost, existing data 
could be included in the reliability assessment and highlight a potential problem in a 
significantly shorter period of time. 

The objective of this research is to explore the application of Bayesian methods in 
assessing stockpile reliability and the use of these techniques in developing test planning 
strategies that will provide the nuclear weapons community with increased confidence in 
the system reliability being reported. 

Alternative Bayesian Techniques 
Within the broad family of Bayesian analysis techniques there are two broad frameworks 
for integrating test data from various sources and at various system and subsystem levels: 
empirical Bayes and hierarchical Bayes.  The terms ‘empirical’ and ‘hierarchical’ are 
unfortunately common in the literature; all Bayesian methods are empirical in nature and 
all can be described as being hierarchical in the fashion in which data is accumulated. 

Hierarchical Bayes (HB) is the more recent addition to the family and is more efficient 
than the traditional empirical Bayesian approach and has been chosen as the general 
direction for future research. HB approach is also less sensitive to the choice of the prior 
distribution parameters, typically the source of much discussion.  A very brief discussion 
of each method is provided in the following sections. 

Empirical Bayes 
The foundation for empirical Bayes, or more specifically, parametric empirical Bayes, 
has been in place since von Mises in the 1940’s, but really came into prominence in the 
1970’s with the series of papers by Efron and Morris, (e.g. Efron and Morris 1972).  
There have been a number of excellent publications in which the authors have taken the 
effort to explain the theory and logic behind empirical Bayes (Casella 1985, Deeley and 
Lindley 1981, Kass and Steffey 1989 and Morris 1983) and its relationship to other 
statistical techniques.   

The following discussion draws heavily from the example presented in Gelman, et. al. 
(2000, p. 120).  The example has been modified slightly to provide some intuition to 
stockpile reliability evaluation.   
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Example 
Assume that success/test data from one particular weapon system is available from 
previous test cycles is summarized in Table 4.  

The objective of the effort is to estimate the probability of failure or defect rate, p.  It will 
be assumed that the number of failures in each of the 10 tests (9 previous, 1 current), will 
be binomial distributed random variable with a given a defect rate p.  The population 
from which the samples for the ten tests were drawn will be assumed to be absolutely 
homogeneous.   

Further, we will assume that p has a prior distribution described by a Beta probability 
density function with known parameters α and β: B(α, β).  The posterior distribution of p 
after test 10 is also a Beta distribution: B(α+1, β+4).  Using the traditional statistical 
approach of method of moments where: 

α + β =
E( p)[1− E( p)]

V (p)
− 1

α = (α + β )E( p)
, 

these parameters can be estimated from the data: α = 0.6, β  = 3.13.  The posterior 
distribution is therefore B(1.6, 7.13) with a mean and variance of 0.183 and 0.015, 
respectively.  Compared to the estimate of p from the current data, 0.25, the posterior 
estimate of p is significantly smaller (p=0.183).   

Some subtle problems exist with the above approach.  First, the use of point estimates for 
α and β  are arbitrary and lack consideration for modeling uncertainty.  Second, if there 
was interest in performing individual analyses on the 9 previous tests, the data would 
have to used once to form a prior and then again as part of the posterior.  Data would be 
used twice and result in an overly 
conservative estimate of the defect rate p. 

In general empirical Bayesian methods 
represent only an approximation to a full 
Bayesian analysis.  It does not represent a 
true Bayesian analysis of the data since a 
traditional statistical approach was used to 
estimate the parameters of the prior 
distribution.  Alternatively, in a 
hierarchical Bayes approach, data 
analysis, all prior and posterior 
distribution characteristics are estimated 
in an integrated fashion. 

Hierarchical Bayes 
As the section title suggests, the 
distinguishing feature of the alterative 
approach to empirical Bayesian analysis is 
the hierarchical nature in which 
information is accumulated. Define 

Test Units  
tested - nj 

Failures-  
yj 

P estimate 
pj 

1 5 1 0.2 

2 4 0 0.0 

3 5 0 0.0 

4 6 1 0.17 

5 4 1 0.25 

6 4 2 0.5 

7 5 0 0.0 

8 6 0 0.0 

9 6 2 0.33 

Total 45 7  

10 5 1 0.25 

Table 4. Empirical Bayes Example 
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        y = y1 ,K , yN{ } to be a set of independent and identically distributed samples and the 
associated likelihood function is therefore l(θ,p | y) . Using the example from the 
previous section, it will be assumed that the variable   θ = {α,β} is an unknown 
hyperparameter vector described via a prior distribution     f (θ) .  In the previous example, 
it was assumed that   θ = {α,β} was known and only required estimation. Now it is 
assumed that it is a random variable and the uncertainty in the hyperparameters is 
addressed explicitly.  (The variable p will be generalized as a vector quantity, p, to allow 
for multiple distribution parameters.) The complete Bayesian analysis for characterizing 
the density function f (p | y)  requires a description of the vector of random variables 

    (p,θ)  with joint prior distribution: f p,θ( )= f (p | θ) f (θ)  and joint posterior distribution: 

f p,θ |y( )∝ f (p,θ)l(p,θ |y)
= f (p,θ) f (y |θ)

 

Note that the joint posterior density function: f p,θ |y( ) can be written as a product of the 
hyperprior f (θ) , the population distribution f (p |θ)  and the likelihood function 
l(θ,p | y) . Under the assumption of an independent and identically distributed set of 
samples,         y = y1 ,K , yN{ }, an analytical expression for the conditional posterior density of 

f (p | θ,y)  can be easily constructed as the product of the density functions f y i( ).  Note 
also that f (y |p,θ) = f (y |θ)  since y does not directly depend on p since θ(p) . 

In the case of conjugate density functions a solution is available directly.  Once an 
expression for the joint posterior function is found, the marginal posterior distribution can 
be found through direct evaluation or via integration:  

f (p | y) =
f (p,θ | y)
f (θ |p, y)

= f (p,θ | y)dθ∫ . 

Example revisited 
We will again assume that the number of failures in each test is an independent 
observation from a Binomial distribution: y j ≈ Bin (n j , p j) .  In addition, the parameter p 
will be assumed to be a random variable following a Beta distribution: p j ≈ B(α, β) . 

The joint posterior distribution is defined: 

f p,α,β |y( )∝ f (α,β) f ( p | α,β )l(y |α,β, p)

∝ f (α,β)
Γ(α + β)
Γ(α )Γ(β)j =1

N

∏ p j
α −1(1− p j )β −1 p j

y j (1− p j)
n j − y j

j =1

N

∏
 

The marginal distributions of the parameters can then be found using the conditional 

probability expression, f ( p | y) =
f (p,α,β | y)
f (p |α,β ,y)

: 

f ( p |α,β,y ) =
Γ(α + β + n j )

Γ(α + y j )Γ(β + n j − y j )j =1

N

∏ p j
α + y j −1

(1− p j )
β +n j −y j −1
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f α,β | y( )∝ f (α,β)
Γ(α + β)Γ(α + y j )Γ(β + n j − y j )

Γ(α)Γ(β)Γ(α + β + n j )j =1

N

∏  

To proceed, it is only necessary to describe a hyperprior distribution function for 
  θ = {α,β}.  Typically this distribution is taken to be relatively non- informative so avoid 
dominating the solution.  Regardless of the choice of hyperprior, it is critical that it be 
mathematically feasible and results in a logical marginal posterior distribution. 

An alternative to the analytical approach outlined above is of simulation to construct the 
various conditional density functions.   

1. Generate a sample of the hyperparameter vector θ from the marginal distribution 
function, f θ | y( ). 

2. Given θ, generate a sample parameter vector p from f (p | θ,y) . 

3. A population sample can be then be generated using the likelihood function 
      l(y | θ,p) . 

Generally these steps will be difficult to accomplish due to the problems associated with 
generating samples from complex conditional distributions.  A simulation technique 
particularly suited for this task, Markov Chain Monte Carlo simulation, will be 
introduced in the following section.  

Two recent applications of hierarchical Bayes methods in the structural reliability area 
are Wilson and Taylor (1997) and Celeux et al. (1999). 

Graphical Representation of Hierarchical Models 
Hierarchical models have been increasingly popular and have a potential application for 
solving very complex problems.  The structure of hierarchical models lends itself easily 
to a graphical depiction of the relationships between various model constructs using 
directed graphs.  These graphical cartoons are useful for organizing information and also 
for constructing the posterior distribution functions discussed above.   

Directed graphs are essentially a set of nodes connected with a set of directed edges or 
arrows which depict the informational dependencies between the nodes.  Those nodes 
that feed information to subsequent nodes are considered parent nodes.  Each node is 
considered independent of all other nodes except parent nodes and those nodes for which 
that node is a parent.   

There are three types of nodes: 

1. Constant nodes have no parents and represent fixed quantities in the analysis.  
These nodes are represented by rectangles. 

2. Stochastic nodes may have parents or children and represent, typically, 
unobserved random variables.  They are commonly represented by circles on the 
graph.   

3. Functional or deterministic nodes represent functions of other variables in the 
graph. 
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Conventional depiction of the edges includes the use of solid arrows for statistical 
dependence and dashed lines for functional dependence.  Note that even though nodes 
may have no common ancestor, and thus are marginally independent, this independence 
may disappear when other quantities enter into the conditioning structure.  Dependencies 
are often induced between variables as a result of observational data.  A box surrounding 
a set of variables indicates that those variables are conditionally statistically independent 
given their parents. 

In the classic example of stress-strength interference,   g = R − S , where: 

    f R (r |µ r,σ r) ⇒ N µ r ,σ r( ),     f s(s | µs,σ s) ⇒ N µs ,σ s( ) and, for example: 

    f µs
(µs | αs, β s) ⇒ N αs , βs( ),     fσ s

(σ s |γ s ,τ s) ⇒ Gam γ s,τs( ) and so on.  As indicated by the 
box in Figure 3, the variables R and S are assumed to be independent random variables in 
this example. 

With the exception of special simple cases involving conjugate distributions, the 
generation of the above mentioned conditional density functions can be extremely 
difficult and in some situations impossible.  An increasingly useful approach for 
generating these distributions is based on assuming that the desired joint posterior 
distribution is the stationary distribution that results from a Markov chain.  The use of 
Monte Carlo simulation methods to generate this distribution is referred to as Markov 
Chain Monte Carlo (MCMC) simulation. 

Markov Chain Monte Carlo Methods 
Fundamental to all Markov Chain Monte Carlo (MCMC) samplers is the ability to 
generate random variables from a distribution indirectly without having to calculate the 
density explicitly.  As the name implies, these simulation methods are based on the basic 
principles of Markov chains.   

 
 
 

Figure 3.  Interference Example of Hierarchical Bayes 
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Let     P( x, y )  represent the transition matrix for a Markov Chain where     P( x, y )  represents 
the probability of transitioning to a state y given that the current state is x.  (Note that 

    
P(x, y)

y∫ = 1 and     P( x, x)  may not be zero.)  Assuming certain regularity conditions for 

    P( x, y ) , then after a sufficient number of transitions the probability of being in any 
particular state converges to a stationary probability density function     π(x) .  In particular, 
if     P( x, y )  satisfies the reversibility criteria:    π( x)P(x, y) = π( y )P( y, x )  then     π(x)  is a 
stationary distribution.  

For MCMC simulation, the problem is just the reverse: given a stationary probability 
density function     π(x) , what is the necessary transition matrix?  A method to accomplish 
this was first proposed by Metropolis (1953) and generalized by Hastings (1970).  

Metropolis-Hastings 
Assume that, as with the acceptance/rejection method above, a candidate density 
function,     q(x, y) , exists for generating possible samples from     π(x) . (In the MCMC 
literature     q(x, y)  is referred to as the proposal distribution.)  However, since samples are 
being generated from a Markov chain, this density function changes during the 
simulation process (depending on the current state).  The density     q(x, y)  can be easily 
constructed so that 

    
q( x, y)dy

y∫ = 1, however it may not satisfy the reversibility criteria.   

The construction of an appropriate state transition matrix     P( x, y ) , for   y ≠ x , must 
account for the degree to which the reversibility criteria is satisfied.  Define the 
probability of moving out of state x into any other state y as     α(x, y) .  Therefore the 
matrix describing transitions from x to y must be conditioned on this probability so that 

    P( x, y ) = q ( y,x)α (x, y) .  It can be shown (e.g. Chib and Greenberg 1995) that 

    

α(x, y) = min
π ( y )q( y,x )
π( x)q( x,y )

,1
 

 
 

 

 
 , if  π ( x)q( x, y) > 0

= 1, otherwise
 

The value of     α(x, y)  represents the probably that the i+1 sample is a new sample, 

    x i+1 = y , or is identical to the existing sample     x i+1 = xi .  Contrast this with the 
acceptance/rejection method outlined above where, upon rejection, the sample is not 
retained. 

The sampling method as first proposed by Metropolis assumes that the proposal density 
function is symmetric, i.e.     q(x, y) = q( y, x ) , which simplifies the criteria for accepting or 

rejecting the next sample: 
    
α(x, y) = min

π ( y )
π( x)

,1
 

 
 

 

 
 .  

For the situation of a scalar x the Metropolis-Hastings algorithm can be summarized: 

1. Assume an initial value of     x(0 )  

2. generate a random deviate, y (the next potential candidate x value), from q x( i ),⋅( ) 
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3. sample     u = U0,1  

4. 
    
If u ≤ α( x(i ), y) = min

π ( y )q( y, x( i) )
π( x( i ) )q( x( i), y)

,1
 

 
 
 

 

 
 
 

⇒ x( i+1) = y  else     x( i+1) = x( i )  

5. repeat steps 2-4 until a stationary sequence of variables of sufficient length has 
been generated 

The proposal distribution can be of any form and a stationary distribution     π(x)  will be 
generated.  However, for faster convergence and better mixing, it is generally desirable 
that the proposal distribution be similar to the desired stationary distribution.  

For a vector valued x, it is often desirable to sequentially update the individual 
components of the vector.  Define         x( i) = x( i )1, x( i )2 ,K, x( i)n{ } to be the ith n-dimensional 

sample vector generated and let         x( i)− j = x( i )1, x( i )2 ,K, x( i) j −1, x( i) j +1,K, x( i)n{ } be the same 
vector, but with the jth element removed.  The Metropolis-Hastings algorithm then can be 
described: 

1. Assume an initial value of         x(0 ) = x(0)1, x(0 )2 ,K,x(0)n{ } 

2. Generate a random deviate,    y( i ) , from the proposal distribution       q y( i) | x( i) jx( i )− j( ).  

The value of     y( i )  represents the updated value of the jth component of       x( i)  where 
the other elements have been updated in a previous iteration. 

3. Sample     u = U0,1  

4. If u ≤ α (x( i ) j, x ( i)− j ,y ( i)) = min
π y( i ) | x( i )− j( )q y( i) | x( i) j , x ( i)− j( )
π x( i ) j | x (i )− j( )q x( i) j | y ( i), x( i)− j( ),1

 

 
 
 

 

 
 
 

⇒ x ( i+1) j = y ( i)  

else     x( i+1) j = x( i) j .  The other elements of       x( i)  are not updated. 

5. Steps 2-4 are repeated until all elements of       x( i+1)  have been updated. 

6. Steps 2-5 are repeated until a stationary sequence of samples       x( i)  is available  

It is very important to note that the distribution     π(x)  needs to be only known up to a 
multiplicative constant, since this constant cancels out in the analysis.  This can be 
critical in those situations in Bayesian reliability analysis where the constant can be 
difficult to calculate.   

The availability of the full conditional distribution 
      
π x( i) j | x ( i)− j( )=

π (x)
π(x)dx( i) j∫

∝ π(x)  is 

critical to MCMC analysis and is the subject of much of the literature.  Common 
approaches will be outlined in the following discussion. 
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Example 

Let 
      
π(x ) =

λ
x!

e−λ  and the proposal 

distribution be a simple random walk: 

 

    
y =

x ( i) +1
x ( i) −1

 
 
 

  
with equal probability

. 

Since q(x,y) = q(y,x)  for a random walk 
process, the dependence on q drops out.  
The Metropolis acceptance ratio is 
therefore:  

    
α =

π( y )
π( x(i ) )

=
x(i )!
y!

λ y− x( i)  

If     u = U0,1 , then the transition to a new state will be accepted if   u < α  and will be rejected 
otherwise.  Figures 4.a,b,c illustrate the results for   λ = 4.0,     x(0 ) = 20 and a sample size of 
N=1000.  Figure 4.a is of the first 100 samples and Figure 4.b is the complete history of 
1000.  Figure 4.c is a histogram depicting the resulting frequency distribution for the 
variable x. 

Gibbs Sampling 
Gibbs sampling is a special case of the Metropolis-Hastings sampling algorithm.  The 
proposal distribution is assumed to be: 

      q y( i) | x( i) jx( i )− j( )= π y( i) | x( i)− j( ) 

When this distribution is incorporated in the Metropolis-Hastings algorithm, the 
probability of accepting a transition is one.  Gibbs sampling is identical to the iterative 

 
 

Figure 4.a-b  Metropolis-Hastings Sample History 

 
 

Figure 4.c Metropolis-Hastings Results 
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algorithm outlined in the previous section with no check for sample acceptance.  Using 
the algorithm outlined by Gelfand and Smith (1990), a sample from the probability 
density function,       f (x) = f ( x1, x2 ) , can be generated by iteratively samping from the full 
conditional distributions     f (x1 | x2)  and     f (x2 | x1) : 

1. Assume an initial value of         x(0 ) = x(0)1, x(0 )2 ,K,x(0)n{ } 

2. Generate a random deviate,    y( i ) , from the proposal distribution       π y(i ) | x ( i)− j( ).  The 

value of     y( i )  represents the updated value of the jth component of       x( i)  where the 
other elements have been updated in a previous iteration. 

3. Step 2 is repeated until all elements of       x( i+1)  have been updated. 

4. Steps 2-3 are repeated until a stationary sequence of samples       x( i)  is available.  
Once stationarity is achieved the resulting samples represent samples from       f (x) .   

The result of Steps 2-3 are realizations from a Markov chain with transition probability 
from       x( i)  to       x( i+1)  given by:  

      
P x( i ), x( i +1 )( )= π x ( i+1) l | x( i ) j , j > l, x (i +1 ) j , j < l( )

l=1

n

∏  

Only the full conditional distributions       π y(i ) | x ( i)− j( ) are needed for Gibbs sampling.  For 
high dimensional x, Gibbs sampling can be slow to converge.  For this reason, if higher 
order conditionals are available, e.g.     f (x2, x3 | x1)  versus     f (x3 | x1, x2 ) ,     f (x2 | x1, x3 ) , 
then the use of those conditionals can significantly speed convergence (Gelfland and 
Smith, 1990).  

It should also be emphasized that variance reduction methods for generating samples 
(Latin hypercube, importance sampling, field analysis, etc.) are still applicable. 

Example 1 (following Casella and George, 1992): 
Let the number of failures observed on a system be a random variable described by a 
binomial distribution: 

    
f (x | p, n) =

n
p

 
  

 
  

px (1− p)n −x  

where p is the probability of observing a defect in a particular trial.  Given an observed 
number of failures, let p in turn be a random variable described by a Beta distribution:  

 
    
f ( p | x, n,α,β ) =

Γ(n + α + β )
Γ(x +α )Γ(n − x + β )

p (x+α )−1(1− p)(n− x+β )−1  

where α and β  are referred to as the pseudo-number of failures and successes 
respectively.  It is desired to obtain the distribution of the number of defects,     f (x ) , i.e. 
the marginal distribution. 
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Figure 5.a depicts the sampling history for variable x after 700 iterations with a Gibbs 
sampler using   α = 2,   β = 4 and n=16.  Figure 5.b is the associated histogram.  Since 
there is a closed form solution available for     f (x ) : 

      
f (x ) =

n
x

 
  

 
  

Γ(α + β)Γ( x + α )Γ(n − x + β )
Γ(α )Γ(β )Γ(n + α + β )

x = 0,1,Kn  

the exact solution is superimposed on the histogram.   

It is important to note that in those cases where the full conditional distributions are not 
available in closed form for easy sample generation, the analyst must resort to a 
Metropolis-Hasting algorithm.   

Full Conditional Distribution 
As noted previously, for Gibbs sampling, only the full conditional distributions are 
required.  By specifying the relationships between these conditional distributions it is 
possible to completely describe the entire model.  These relationships are fully 
characterized by the directed acyclic graph (DAG) discussed in the hierarchical section 
above.  The DAG represents the conditional dependencies of the full model before any 
data is collected.  When data is introduced to the model, the statistical relationships 
between variables may change.   

Let v be the set of nodes on a DAG of interest and vi  be a particular node.  Define     v−i  to 
be set of nodes without the node vi.  A parent of vi is any node with a directed line from it 
to node v.  Lauritzen, et al. (1990) showed that a DAG model constructed in the above 
manner fully describes the joint distribution of all the random variables in terms of the 
conditional distribution of each node:       f (v) = P(vi | parents [vi])∏ .  The full conditional 
distribution is therefore  

 
Figure 5.a-b  Results for Example 1 of the Gibbs Sampler 
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f x j | x− j( )=
f (x)

f (x)dx j∫
∝ f (x) = f x j ,x − j( )
∝ terms in f (x) involving x j

= P(x j | parents [x j])
prior

1 2 4 4 4 3 4 4 4 
P(wk | parents [wk ])

x j ∈parents [wk ]
∏

likelihood
1 2 4 4 4 4 4 4 3 4 4 4 4 4 4 

 

If full conditional distributions are difficult to sample from, an adaptive rejection method 
can be used (Gilks , 1992).  

Example 

Using the stress-strength example depicted in the DAG above, the joint distribution of all 
the parameters is given by:  

    

f (R,S,µr ,σ r , ar ,β r ,γ r ,τr ,µs ,σ s ,as ,βs,γ s,τs) =
f (R | µr ,σ r ) f (µr | ar,β r ) f (σ r | γ r ,τ r) f (S |µ s,σ s) f (µs | as,β s) f (σ s |γ s,τs)

 

Exchangeability 
Assume that over a period of time, a series of N binary (go/no-go) tests were performed.  
For the jth test, a sample of nj was evaluated and θj failures were observed.  If there is no 
information to distinguish any of the tests, there were no grouping or unique ordering, 
then there is symmetry in the parameters.  This symmetry implies that it is possible to 
analyze the data regardless of the order in which the data was observed and processed, 
i.e. it is equally realistic to analyze the data as       θ1 ,θ2, θ3,K ,θ n( ) or as       θ n ,θ2 ,θ1,K, θ3( ).  In 
this situation, where all the parameters are assumed to come from identical distributions, 
it is appropriate to use an exchangeable model.  When additional data becomes available 
to support differences, then exchangeability may still be appropriate.  For example, if 
after a series of tests, system age is identified as a distinguishing feature, this feature may 
be explicitly included in the model.  In this way the dependencies may be encoded or 
grouped in such a manner that the resulting model is then exchangeable (Gelman, et al. 
2000, p. 123-126). 

Bayesian System Reliability Analysis 

System Level Analysis 
Over the past 35 years there has been considerable effort expended in characterizing the 
reliability of a complex system using Bayesian methods.  The reader is referred to the 
many fine articles in the literature as well as the many books such as the classic by Martz 
and Waller (1982) and the more recent Savchuk and Tsokos (1996). 

The majority of the literature concentrates on the development of approximations to 
unique system configurations and failure density functions such that the results are 
mathematically tractable.  However, it is felt that the current reliability analysis problems 
to be addressed with this research can be better met with advanced computer simulation 
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methods.  This approach requires a minimum of compromise in utilizing all available 
component and system operational information. In addition, prior distribution functions 
and system configurations are not ‘forced’ onto the analysis.   

The material in this section is presented more to introduce notation necessary for future 
discussions rather than for completeness.  The emphasis is on developing the 
mathematical foundation needed for combining system and component test information.   

System Definition 
It will be assumed that each of the       i , i =1,K ,n , components or subsystems, as well as the 
entire system can be in one of two possible states: operational or failed.  [Note that all of 
the methods to be discussed can be generalized to multi-state system operation, and the 
possible dependence on time is understood.]  The vector         x = x1 ,K , xn{ } and the variable 
y completely represent the state of the subsystem and components respectively, where: 

      
y,x i =

1    if (sub)system operating
0    if (sub)system failed     

 
 
 

i = 1,K,n  

The system state is related to the subsystem states through a function   φ(⋅)  referred to as 
the system structure function:       y = φ(x1 ,K, xn ) .   

Coherence 
Consider two n-tuples:       (α1,K ,α n)  and       (β1,K ,βn ) .  The dominance of α  over β  is 
denoted: α ≥ β  and is defined:       α ≥ β iff α i ≥ βi , i = 1,K, n .  Equivalence of α  and β  is 
denoted: α = β  and defined:       α = β iff α i = βi , i = 1,K, n .  A structure function,     φ(x)  is 
said to be coherent if:     ′ x ≥ ′ ′ x ⇒ φ( ′ x ) ≥ φ( ′ ′ x )  for all vectors x´ and x?.   

Reliability 
Let pi , the probability that subsystem i is functioning, be a random variable with 
distribut ion function     π( pi)  defined over the unit interval.  The expected reliability of the 
ith component is therefore: ˆ p i = E[ pi] = pi∫ π ( pi)dpi .  It will be assumed that, given pi , 

xi  is independent of p j ,∀ j ≠ i  and, given   p = p1,K, pn( ), the xi  are all mutually 
independent.   

For a series system, the reliability is given by: 

  

pS = Pr{y = 1 | p1, p2,K, pn}π(p1, p2 ,K,pn )dp∫

= ( pi
n

∏ )π(p1 ,p2 ,K, pn)dp∫
 

where   π( p1, p2,K, pn ) is not necessarily equal to   π( p1)π( p2 )Lπ(pn) .  Finally, a statement 
regarding the expected reliability of the system can be constructed: 
ˆ p s = E[ps] = φ(p)π(p)dp∫ .  Except for unique situations, evaluation of ˆ p s  is difficult to 
compute and various uncertainty analysis methods, e.g. Monte Carlo, must be applied.   
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Aggregation of System/Component Data 
A number of authors have suggested methods for combining subsystem and system data 
under a Bayesian framework, including: Mastran (1976), Mastran and Singpurwalla 
(1978), Martz, Waller, and Fickas (1988) and Martz and Waller (1990).  In general, these 
papers, along with a number of others, support analysis approaches that permit the 
inclusion of test data from a number of levels of system indenture, into an overall 
estimate of the system reliability.   

The methods all depend on a combination of analytical techniques for combining test 
information and inherently depend on assumptions regarding the underlying distribution 
function.  The approach presented in this paper is far less elegant, but applicable to wider 
array of complex system configurations. 

Caution Regarding Aggregation 
As noted in the papers above, the 
aggregation of system and component 
level data can become involved.  In 
general, the system level reliability 
distribution derived from component 
data is used as a prior the reliability 
distribution based on system level 
data (Figure 6).  However, when 
component and system level failure 
and performance information is 
collected at the same time, 
aggregation of component data into a 
system level analysis may not result 
in the same reliability prediction as obtained from the system data alone, e.g. Azaiez and 
Bier (1995). 

Reliability Simulation Using MCMC 
The preceding discussion has laid out the pieces that comprise a foundation for 
conducting a Markov Chain Monte Carlo analysis of a complex system.  The following 
discussion focuses on the application of these techniques in the reliability assessment of 
such a system.  The discussion begins with the development of two methods for 
performing component level analysis.  Also addressed is the issue associated with the 
inclusion of experimental and historical data in the component reliability assessment.  
Finally, an approach for combining component level information into a system level 
reliability evaluation is presented with a suitable eye on the impact of aggregation of 
data.  

 

Component Level Analysis 
For now, assume that each component can be tested and results in the observation of 
either a success or failure.  In this binomial sampling there are n tests performed, s 
successes observed and p is defined to be the probability of success on a single trial.  The 

 
Figure 6.  Failure Data Processing Options  
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conditional distribution of the number of failures 
observed given a particular probability of success is 
therefore: 

  
P S = s | p,N = n( )= f (s | p) =

n!
s!(n − s)!

ps (1− p) n− s p > 0

 

Let g(p) be the prior density function describing the 
probability of failure.  The posterior distribution 
function is then given by: 

g( p | s) =
f (s | p)g(p)
f (s | p)g(p)dp∫

= Kp s(1− p)n −sg(p)

   

Prior distribution – Example 1 
Each component will be assumed to be highly reliable and, following Chen and 
Singpurwalla (1996), the prior distribution on the probability of failure will be assumed 
to be a truncated beta distribution: Beta(1,α), defined over the interval (γ ,1)  (Figure 9.a): 

π( p | γ ,α ) =
1

B(a,b)
pa −1(1− p) b−1 0 < p < 1, a,b > 0

= α(1− p)α −1 (1− γ )α γ < p <1, 0 < α < 1
.   

Since the component reliabilities are assumed to be much more likely to be large, the 
values for α will be limited to the interval (0,1). 

 
Further, assume that the lower limit on the reliability, γ, is a random variable that is more 
likely to take on smaller values.  It is also defined by a beta density: Beta(1,α+1), 
π(γ |α) = (α + 1)(1− γ )α , where 0 < γ < 1, 0< α < 1.  Note that (see Figure 7.b) as α 
becomes smaller, the hyperpriorπ(γ |α) approaches a uniform distribution.   

 
Figure 7.a Prior Family 

 
Figure 7.b  Hyperprior Family 

 
Figure 8.  DAG for Example 1 
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The directed acyclic graph 
depicting the relationships between 
the prior and hyperprior random 
variables and parameters is 
presented in Figure 8.   

Prior distribution – Example 2 
In this situation, the first stage prior 
of the reliability will be assumed to 
follow as beta distribution defined 
on the full interval (0,1).   

π( p | a,b) =
1

B(a,b)
p a−1(1− p) b−1 0 < p <1, a,b> 0

 

A common approach is to redefine the variable p via a logit transformation: 

r = log
p

1− p
 
  

 
  

. 

It is well known that if r is assumed to be a Gaussian random variable, then p is 
approximately beta.  The second stage distributions for the first stage distribution 
parameters, µ,σ  can then be conveniently constructed.  For example, µ can be assumed 
to be an improper uniform distribution defined across the real line and νλ σ 2  can be 
assumed to follow a χν

2  distribution where λ and ν are specified. 

However, for the current situation, it will be assumed that the first stage prior remains 
described as a beta distribution and that the parameters, a and b, are each random 
variables further characterized in a second stage probability distribution.   

The second stage distribution will be assumed to be a two parameter Weibull: 

f (x) =
α
β

x
β

 
  

 
  

α −1

exp −
x
β

 
  

 
  

α 

 
 
 

 

 
 
 

x > 0,α,β > 0 

The DAG of this multi-stage analysis is depicted in Figure 9. 

Component Data 
Given that a set of n independent tests are performed on a component with s and f 
successes and failures are observed, then the data d = (n, s)  can be incorporated into the 
posterior distribution function: π( p | a,b,d) . 

Construction of Full Conditional Distributions (without system level test data) 
For this example a first stage beta and second stage Weibull distributions will be 
assumed.  The joint distribution of the data and the parameters of this model are then 
described by: 

 
Figure 9.  Component DAG for Example 2 
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g( p,a,b,d) = g(pi | a, b)g(a)g(b)
i

∏

=
p a+ s−1(1− p)b + f −1

B(a,b)
αaαb

βaβb

a
βa

 
 
 

 
 
 

α a −1
b

βb

 
 
 

 
 
 

α b −1

exp −
a

βa

 
 
 

 
 
 

α a

+
b

βb

 
 
 

 
 
 

α b 
 
 

  

 
 
 

  

 

 
 
 

 

 
 
 

 (A) 

To construct the full conditional distribution π(a |b)  it is a simple matter to pick out 
those terms in (A) which involve the parameter a:  

π(a |b) ∝ aα a −1p a+ s−1exp −
a
βa

 
  

 
  

α a 

 
 
 

 

 
 
 
. 

Similarly, the full conditional distribution π(a |b) can be found: 

π(b |a) ∝ bα b −1(1− p)b + f −1exp −
b
βb

 
  

 
  

α b 

 
 
 

 

 
 
 
 

 Since these distributions cannot be sampled from directly, the Gibbs sampling approach 
can not be used directly.  It is necessary to augment the sampling with a Metropolis-
Hasting rejection step.  Note that the full conditional distributions need to be known only 
up to a multiplicative constant since that constant will cancel in the reject step. 

Simulation 
The proposal distribution q ⋅() still needs to be specified.  For the parameters a and b, the 
distribution will be assumed to be a Gaussian distribution with mean equal to the current 
value of the parameter and a standard deviation of twice the standard deviation of the 
associated marginal distribution.  For p, the proposal distribution will be assumed to be 
U0,1 . 

1. Assume initial values for p(0 ), a(0 ),b(0 ){ }.  These initial values are assumed to be 
the means of the respective marginal distributions.   

2. Generate a random deviate for the parameter a: 

a. Generate a candidate random deviate, a( i) , from the proposal distribution 
y( i ) ~ N(a( i−1), 4σ a

2) .  

b. Sample     u = U0,1  

If u ≤ α (y( i ),a( i −1),b( i−1), p( i−1)) =

min
π a = y( i) | b( i−1), p( i−1)( )q a = y( i) |b( i−1),p( i−1)( )

π a( i−1) | b( i−1), p( i−1)( )q a( i−1) |b( i−1),p( i−1)( ) ,1
 

 
 
 

 

 
 
 

⇒ a( i+1) = y( i)

  

else a( i+1) = a( i ).  The other parameters, p and b, are not updated. 

3. Generate a random deviate for the parameter b: 
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a. Generate a candidate random deviate,b( i) , from the proposal distribution 
y( i ) ~ N(b( i −1 ), 4σ b

2) .  

b. Sample     u = U0,1  

If u ≤ α (y( i ),a( i ),b(i −1), p( i−1)) =

min
π b = y( i) | a( i ), p( i−1)( )q b = y( i) |a( i), p( i−1)( )

π b( i−1) | a( i ), p( i−1)( )q b( i−1) |a( i ),p( i−1)( ) ,1
 

 
 
 

 

 
 
 

⇒ b( i +1) = y( i)

  

else b( i+1) = b( i ).  The other parameters, p and a, are not updated. 

4. Generate a random deviate for the parameter p: 

a. Generate a candidate random deviate, p( i) , from the proposal distribution 
y( i ) ~ U0,1.  

b. Sample     u = U0,1  

 

If u ≤ α (y( i ),a( i ),b(i ),p( i−1)) =

min
π p = y( i ) | a( i),b( i )( )q p= y( i ) | a( i),b( i )( )

π p( i −1) | a( i),b( i )( )q p( i −1 ) | a( i),b( i )( ) ,1
 

 
 
 

 

 
 
 

⇒ p( i +1) = y( i )

  

else p( i+1) = p( i ).  The other parameters, a and b, are not updated. 

5. Steps 2-4 are repeated until a stationary sequence of samples       x( i)  is available  

Example 
Let the conditional priors on a and b be Weibull distributions with means µa  and µb  
respectively.  These statistical characteristics have some intuitive relationship to the 
Bayesian concept of pseudo-successes and pseudo-failures.  These parameters are 
variables input by the user depending on component historical information.  For the 
following example, these parameters are assumed to be µa =9.0 and µb =1.0.  
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Since there are two Weibull parameters, a second assumption is necessary.  It will be 
assumed that the shape parameter, α, of both Weibull distributions is 3.5.  From 
experience, the values of this parameter in the range [2.8-4.2] provide a consistent and 
stable response over a wide range of possible situations.  For those situations where the 
component is considered to be very highly reliable, a shape parameter of 1.0 has also 
been found to be suitable. 

These two conditions can be combined to estimate the location parameter of the Weibull 
distribution via the relationship: β i = µi Γ 1+1 αi( ). The standard deviation of a and b 
must also be found and can be calculated using the expression: 

σ i
2 = β 2 Γ

2
α

+1
 
 

 
 − Γ2 1

α
+1

 
 

 
 

 
  

 
  
.  The standard deviation of both parameters is 

approximately 0.316.  Using the parameter means as initial starting values, Figures 10.a 
and 10.b depict the results for the parameters a and b during the course of 1000 
simulation runs.  Figure 10.c is a plot of the observed component reliabilities π( p | a,b)  
over the 1000 simulations runs and Figure 10.d is the associated frequency histogram.   

 
 

Figure 10.a-b Results for Component Reliability Example 

 
 

Figure 10.c-d  Results for Component Reliability Example 
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From this analysis, a point estimate for the component 
reliability can be estimated: 

E[p] = π (pi | a,b)
i =1

N

∑ N = 0.833, along with the 

associated Bayes risk: σ p = 0.1102 .  Based on the 
simulation results, a 10% lower confidence limit of 
0.68 and an upper 90% upper limit of 0.95 can be 
estimated for the component reliability.   

Stationarity 
A critical consideration when using any MCMC technique is the number of simulations 
required before stationarity is achieved.  Given the above stage one and stage two 
distribution assumptions, the simulation process stabilizes very quickly.  If instead of the 
mean values for a and b, arbitrary values had been chosen, the random process will still 
converge very fast as seen in Figures 11.a-b.  In this case, initial values of 5.0 and 5.0 
were used for initial values and the process becomes provides useful simulation results 
after only approximately 25 simulations. 

System Level Analysis with Component Data 

Independent Failure Modes 
Before delving in the more complicated aspects of component interaction, a simple 
demonstration of the above approach will be provided.  The system in question will be 
the simple 4 component system depicted in Figure 12. 

An estimate of the system reliability will be constructed by combining simulated 
component reliability estimates through a coherent system function: 

Rc = φ(p) = p1 p2 1− (1− p3)(1− p4 )[ ] 

(Rc represents the reliability of the system based on component data, while Rs is defined 
as the system reliability based on system level data.)  The vector of component 

 
 

Figure 11.a-b Results Using Extreme Initial Values 

 
Figure 12.  Simple System 
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reliabilities, p, is generated using the MCMC algorithm discussed in the previous 
discussion.  Each vector of simulated component reliabilities is transformed using the 
system structure function and a system reliability estimate is collected.  The result is an 
estimate of the posterior distribution of the system reliability: π(Rc |θ,d)  given historical 
information and current failure data on each of the components.  As with the component 
analyses, point and interval estimates of Rc can be computed.  Also available is an 
estimate of the Bayes risk associated with using the historical component failure 
information. 

The first stage prior for all for components is assumed to be Beta(a,b) and the second 
stage prior for all first stage parameters is assumed to be Weibull(α,β).  The parameter 
values for the second stage priors are presented in Table 5.  Given mean values for the 
parameters, and the assumption of a Weibull with shape parameter of 3.5, the location 
parameter for the Weibull can be easily found for each 
second stage prior.  No historical data was assumed to 
be available on any of the components. 

The 444CCC  software analysis package was used to 
complete the system level reliability analysis based on 
the component information.  A histogram of the 
reliabilities for each of the components is presented in 
Figures 13.a-d.  Figure 14.a depicts the system 
reliability under the situation where no historical data 
is available.  The best estimate of the system reliability 
is 0.68 with a Bayes risk of 0.195 and an 80 percent confidence interval of [0.39, 0.90].  

Component µa µb 

p1 1.60 0.18 

p2 9.10 1.01 

p3 18.19 4.27 

p4 3.94 0.92 

Table 5.  First and Second 
Stage Parameters  

 
 

Figure 13.a-b   Results for Components 1 and 2 



    

SAND 2001-3513   28 

In contrast, Figure 14.b depicts the situation where 10 tests were performed on 
component 1 and 9 successes observed.  Combining this data with the prior beliefs about 
component one results in a new estimate of the system reliability of 0.74, a Bayes risk of 
0.133, and an 80 percent confidence interval of [0.57, 0.90].  The change in the estimated 
reliability is evident in Figure 14.b, but equally important is the increased confidence in 
this estimate that results from the additional test data.   

System and Component Data Aggregation  

It is often the case that testing is conducted at the system level and information regarding 
the failure or success of particular subsystems is not available or not collected.  As noted 
previously in the discussion on data aggregation, care must be taken when interpreting 
system level test results and combining this information with component historical failure 
data.   

 
 

Figure 13.c-d Results for Components 3 and 4 

 
 

Figure 14.a-b Results for System Level Analyses 
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In this effort, the system level posterior distribution function that results from combining 
component test information will be used as a prior distribution for the system level 
reliability analysis.  Based on the previous discussion regarding the binomial testing of 
components:  

g( ps | s) = KRs
S (1− Rs)

F g( ps)

∝ Rs
S (1− Rs )F π (pc |θ,d)

 

where S and F are the system level 
successes and failures respectively. 
The posterior distribution function 
defined as a function of a set of 
parameters and data, now becomes the 
prior distribution for the system 
reliability:π( pc |θ,d) ⇒ g( ps) .   

This is generally available as a 
histogram of M intervals constructed 
from the results of an analysis such as 
an MCMC simulation described 
above. To construct the histogram of 
the system reliability based on both 
component and system data:  

G[ pi | S,F] =
1

B(S,F)
pi

S (1− pi)
Fπ ( pi | θ,d) i = 1,..., M  

The nth moment of the system reliability is then given by:  

E[pS
n ] =

1
B(S,F)

pi
n pi

S(1− pi)
Fπ (pi |θ,d)[ ]

i=1

M

∑  

and a point estimate and associated Bayes risk can be easily constructed (see Figure 15 
for the definition of π( pi | θ,d) ).  

Example 
The 444CCC  software was again used to incorporate system level failure data into a reliability 
analysis of the simple system depicted in Figure 12.  Results from a total of nine different 
test examples are presented including 
the base case where no component and 
no system test data are available.  
Significant differences between cases 
are highlighted in red.  Figure 16 
depicts a typical prior probability 
density function for the reliability of a 
component for the base case.  Typical 
sample prior distributions for the 
parameters a and b are presented in 
Figure 17.  The resulting system 

 
Figure 15.  Elements of Component Histogram 

 
Figure 16.  Typical Component Reliability 

Prior 
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reliability probability density function is depicted in Figure 18. 

Cases 2-4 illustrate how the assumption of prior information for each of the major types 
of components impacts the final system reliability estimate and the uncertainty in the 
reliability.  (Note that the confidence in the reliability estimate is presented in terms of 
the variance of the reliability estimate or equivalently, the Bayes risk.  As the variance in 
the reliability estimate decreases, the 
confidence in the estimate increases.) 

The consequences of data aggregation 
is investigated in cases 5-9.  Cases 5-7 
illustrate the situation where a total of 
10 system level tests were conducted 
and failures were isolated to 2 
components.  Case 5 involves the 
situation where all data is aggregated 
to the system level for reliability 
estimation.  Two different scenarios for failure observation are investigated in cases 6 and 
7: first, failures are observed on each of the parallel components, see Figure 19 for typical 
component reliabilities for case 6.  Secondly, the failures were assumed to have all 
occurred on a single series unit.  The variation in the reliability for these two cases in 
comparison to the system level results (case 5), highlights the need for extreme caution 
when using system level data for a reliability analysis.  In particular, note the difference 
in the probability density functions for the system reliability illustrated in Figure 22.  
Finally, in case 8 test data is available only at the system level; due to instrumentation 

  
Figure 17.  Typical Parameter Prior Density Functions  

 
Figure 18.  Typical System Reliability 

Component 1 2 3 4 System System Level 
Results 

 data prior data prior data prior data prior data   
Case S F S F S F S F S F S F S F S F S F µ σ 

1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 0 0.300 0.295 
2 0 0 5 5 0 0 1 1 0 0 1 1 0 0 1 1 0 0 0.216 0.200 
3 0 0 1 1 0 0 1 1 0 0 5 5 0 0 1 1 0 0 0.291 0.281 
4 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 5 5 0.481 0.143 
5 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 8 2 0.733 0.121 
6 10 0 1 1 10 0 1 1 9 1 1 1 9 1 1 1 0 0 0.744 0.158 
7 8 2 1 1 10 0 1 1 10 0 1 1 10 0 1 1 0 0 0.632 0.147 
8 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 3 0 0.761 0.174 
9 3 0 1 1 3 0 1 1 0 3 1 1 3 0 1 1 0 0 0.502 0.268 

 
Table 6.  Results of 9 Sample Cases 
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costs it was not possible to collect component failure information during the flight test.  
This scenario is very typical in operational testing of air-to-ground missiles.  In reality, 
there has been 3 component failures, all involving a component that is part of a redundant 
segment of the system.  The reliability estimates that result from these two different cases 
is vastly different (0.761 versus 0.502).  

Correlated System Failure Modes  
A complicating factor in system reliability analyses is the possibility that various 
components of   φ π ( p1,p2 ,K,pn |a,b,d)[ ] may be statistically correlated.  In more general 
situations a system may have a number of possible failure modes that are statistically 
related to each other through the physics of system operation.  To address this issue, a 
little known family of multivariate distributions will be introduced and subsequently 
applied. 

Bivariate Sarmanov Distribution 

In 1966 Sarmanov developed a bivariate family of distributions which have the capability 
of characterizing highly correlated random variables.  Lee (1996) rediscovered this work 
and suggested its possible use in the area of Bayesian analysis; the following discussion 
draws heavily from that paper.   

For the bivariate case, define the parameter vector θ i, i = 1,2 .  Let π( pi |θ)  be univariate 
probability density functions and let ϕ(xi)  be bounded, nonconstant functions where 

ϕ(pi) f (pi)dpi = 0∫ .  Then the function: 

π( p1, p2 | θ1,θ2 ,ω12) = π ( p1 |θ1)π ( p2 | θ2) 1 +ω12ϕ( p1)ϕ(p2 ){ } 

is a bivariate joint density function with 1 +ω12ϕ( p1)ϕ(p2) ≥ 0, for all pi .  Note that a 
similarity measureω12 = 0  implies that p1  and p2 are statistically independent.  The 

 
Figure 19.  Typical Component Reliabilities – Case 6 

 
Figure 19.  Typical System Reliabilities – Case 5 and Case 6 
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correlation coefficient of p1  and p2  can be derived: ρ =
ω12ν1ν 2

σ1σ 2
 where 

νi = piϕ(pi)π( pi |θ)dpi−∞

+∞

∫  and σi is the standard deviation of pi..  The range of the 

similarity measureω12  can also be shown to be bounded:  

max
−1

µ1µ 2

,
−1

(1− µ1)(1− µ2)
 
  

 
  

≤ ω12 ≤ min
−1

µ1(1− µ2 )
,

−1
µ2(1− µ1)

 
  

 
  

 

If π( pi |θ)  is a beta distribution function and the mixing function is defined as 
ϕi(x) = pi − E[pi] , then the correlation coefficient simplifies to: ρ = ω12σ1σ 2  and the 
bounds on the similarity measure simplify to: 

−(a1 + b1)(a2 + b2)
max( a1a2 ,b1b2)

≤ ω12 ≤
(a1 + b1)(a2 + b2)
max( a1b2,a2b1)

 

 

Multivariate Sarmanov Distribution 

Lee (1996) also generalized the similarity relationship above to n dimensions.  Define a 
relationship parameter  

R123(p1, p2, p3 ) = ω12ϕ(p1)ϕ( p2) +ω13ϕ( p1)ϕ(p3 ) +
ω23ϕ(p2)ϕ(p3) + ω123ϕ( p1)ϕ(p2)ϕ( p3)

 

where: ω123 =
E[(p1 − µ1)(p2 − µ 2)( p3 − µ3 )]

σ 1
2σ 2

2σ 3
2  and µi = E[ pi] .  Then  

π( p1, p2, p3 | θ1θ2θ3ω) = π (pi |θ1θ2θ3 )
i =1

3

∏ 1 + R123(p1 ,p2, p3 ){ }.   

The expression can be generalized: 

  
π( p1, p2,K, pn | θ,ω) = π ( pi |θ)

i=1

n

∏ 1+ R12Kn ( p1, p2,K, pn){ } 

Sampling Approach 

Generation of the set of system component reliabilities:  

  
π( p j | p1,K,p− j ,K, pn |θ,ω) = π (p j |θ)

1+ R12K n (p1, p2,K, pn)
1+ R12K(− j )n ( p1,p2 ,K, p− j ,K, pn)

 
 
 

  

 
 
 

  
  

can be accomplished easily using the Metropolis-Hastings rejection sampling scheme.  
Note that π( p j |θ)  is a beta distribution and that since | R |≤1:   

  

1 + R12Kn ( p1, p2,K,pn )
1 + R12K(− j )n ( p1, p2 ,K, p− j ,K,pn )

 
 
 

  

 
 
 

  
≤ 2= M  
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A sample taken and accepted if: 
  
M ⋅U0,1 ≤

1+ R12K n(p1, p2 ,K,pn )
1+ R12K(− j )n (p1, p2,K, p− j ,K,pn )

 
 
 

  

 
 
 

  
.   

  

Expert Elicitation to Construct Similarity Relationships  
Recall that the similarity measure can be defined in terms of the correlation coefficient: 
ω12 = ρ12 σ1σ2 .  Some algebra results in the expression:  

ω12 = E[ p1 | p2]− E[ p1]( ) σ1
2 p2 − E[p1][ ]

= Ω12 p2 − µ1[ ]  

Obviously the best approach to constructing the similarity measure is via an estimate of 
the correlation function based on actual test data.  However, if specific data regarding the 
correlation between component reliability or failure modes is not available, the parameter 
Ω12 = E[ p1 | p2] − µ1( ) σ1

2 can be constructed via expert elicitation of E[p1 | p2] ; the 
expected values of p1 for given values of p2.   

These similarity measures might also be the result of expert elicitation using those 
techniques being developed at LANL and implemented in the PREDICT software 
package.  

Discussion 
The area of correlated failure modes and the merging of data from similar systems is a 
very fruitful area of discussion.  There are many examples and situations where such an 
approach would be critical to making the most efficient use of the available test data.  For 
this reason, discussion of specific examples is presented under a separate technical report 
to be released in the near future.   

Summary 
This report has provided a mathematical foundation for an approach to bring together 
data from a variety of sources and provided an approach to combine this data in a logical 
fashion.  The application of this approach will result in an increased confidence in the 
reliability assessment of the nuclear weapons stockpile.   

The benefits of using a Bayesian approach were very briefly reviewed and two 
alternatives to Bayesian analysis were discussed.  The hierarchical Bayes approach was 
suggested as having more widespread applicability and also reduced the sensitivity of the 
analysis to the assumptions regarding the statistical structure of the prior information.   

The fundamental aspects of Monte Carlo Markov Chain (MCMC) were reviewed 
including a brief discussion of the methods associated with Metropolis-Hastings and 
Gibbs sampling.  A methodology for the application of MCMC methods to component 
reliability was outlined and applied to a simple example.  The approach was extended to 
allow the assessment of system reliability using both component prior information and 
component test data.  
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Finally, an approach to aggregating system level test data and component test data was 
developed and demonstrated through a sequence of test cases.   

The discussion and examples presented in this report have been limited to those systems 
composed of discrete components, i.e. those that can be characterized as operating or not 
operating.  However, there is nothing unique about the underlying principles and the 
extension to continuous subsystem/systems is straightforward.  In addition, an approach 
for considering the possibility of correlated failure modes was also developed.  Further 
discussion and application of this approach is reserved for a future research report. 
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Appendix A. Function Definitions 
 

Name Density Function Mean Variance 

Beta(a,b) 1
B(a,b)

pa −1(1− p)b −1 0 < p < 1, a,b> 0 
a

a + b
 

ab
(a + b + 1)(a + b) 2  

Truncated 
Beta(a,b,p0,p1) 

1
B(a,b)( p1 − p0)

a−1 (p − p0)
a−1(p1 − p)b −1

0 ≤ p0 < p ≤ p1 < 1, a,b > 0
 

  

Weibull(a,b) a
b

x
b

 
 

 
 

a −1

exp −
x
b

 
 

 
 

a 

 
 
 

 

 
 
 

x > 0, a,b > 0  bΓ
1
a

+ 1 
 

 
  b 2 Γ

2
a

+ 1
 
 

 
 − Γ2 1

a
+1

 
 

 
 

 
  

 
  
 

InvGam(a,b) b a

Γ(a)
1
x

 
 

 
 

a +1

exp −
b
x

 
 

 
 , x,a,b> 0 

b
a −1

, a > 1 b2

a −1( )2 a − 2( ), a > 2  

B(a,b) Γ(a + b)
Γ(a)Γ(b)

, Γ(n) = xn −1e−x dx,
0

∞

∫
or if n is integer > 0, Γ(n) = (n − 1)!
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Appendix B. Monte Carlo Sampling 
 

Monte Carlo Sampling  
For each random variable in a problem, a random deviate is chosen from the sampling 
probability density function.  Using these values a vector of random inputs is constructed, 
    Xi . This vector of random deviates is used as parameter settings in system model and a 
system response, G, is calculated. A series of n sample vectors are generated, 

        {X1,K, Xn}, and associated system response calculated until sufficient samples have been 
generated such that the analyst is confident that the uncertainty in the system response 
has been adequately characterized. 

The following discussion is extremely brief; there are scores of books dedicated to Monte 
Carlo sampling techniques.  This section is included primarily for completeness and to 
provide a basis for discussing variations on the Monte Carlo theme.   

Random Number Generation 
An essential element in any Monte Carlo scheme is the generation of random numbers.  
Knuth (1981) provides an excellent discussion, and the following is a brief look at only 
the more common approaches.  It will be assumed that, as a minimum, the generation of 
uniformly distributed random deviates from the interval [0,1] is available.  Notationally, 
these random deviates will be denoted:     U0,1 .  A random deviate from a Gaussian density 
function with mean µ  and variance   σ 2 will be denoted:     N (µ ,σ 2 ) . 

There are three fundamental methods for generating random numbers: inversion, 
transformation and rejection.  Only a brief introduction to these methods will be 
presented; the reader is again referred to the many books on simulation, e.g. Ripley 
(1987) or Rubenstein (1981). 

Inversion 
Inversion is the most straightforward method of generating random numbers from a 
particular density function.  This technique is based on the availability of the inverse 
cumulative density function for the density function of interest.  For some probability 
density functions this is straightforward, as in the case of the exponential density.  In 
other cases, such as the Gaussian probability density function, this inverse does not exist.   

Assume that the cumulative density function of the random variable is known, 

    y = P{ X ≤ x}= F (x ) .  Since y can take on any value in the interval [0,1], it is a simple 
matter to generate a random value   yi  from     U0,1  and then solve:     x i = F −1(U 0,1) . 

Example 
Given a random variable x with probability density and cumulative density functions: 

    

f (x ) = λexp{−λx}
F(x ) = 1− exp{−λx} λ, x ≥ 0
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The inverse of the cumulative function is easily found: 

Since (1-y) is distributed    U0,1 , y is also distributed     U0,1 .  The above expression can be 
simplified somewhat and a sequence of random variables from an exponential 
distribution can be generated by repeated application of: 

    
x i = F −1(U 0,1) = −

1
λ

ln(U0,1)  

Transformation 
While the inversion method is extremely straightforward, it depends on the ease with 
which the inverse cumulative density function can be computed either analytically or 
numerically.  In those cases where the inverse is not easily available, an alternative 
method for deviate generation is the transformation method.  The basic idea behind the 
transformation method is to develop a function, which when applied to uniformly 
distributed random deviates, transforms these random variables into deviates from the 
desired density function.  The inverse method described above is, as might be suspected, 
a unique case of the transformation method.   

Assume a general two-dimensional case, where it is desired to generate a random number 
from the density function,     f (x1, x2 ) .  This density function can be described as a result of 
the transformation: 

    
f (x1, x2 ) = g(y1 , y2 )

∂ y1, y2( )
∂ x1, x2( )  

where     g( y1, y2)  is some function of the new variables     y1 , y2  and 
    

∂ y1, y2( )
∂ x1, x2( )  is the 

Jacobian of the transformation.   

Example 
The most famous application of the above approach is the Box-Muller method for 
generating random deviates from the Gaussian probability density function.  Let      y1 , y2  
be independently dis tributed with density functions,     U0,1 . Define: 

    

x1 = −2 ln( y1) cos(2πy2)

x2 = −2 ln( y1) sin( 2πy2 )
 

therefore: 

    

y1 = exp −
1
2

x1
2 + x2

2( ) 

 
 

 

 
 

y2 =
1

2π
arctan

x2

x1

 

 
 

 

 
 

 

The Jacobian is then: 
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∂ y1, y2( )
∂ x1, x2( ) =

1
2π

exp −
x1

2

2
 

 
 

 

 
 

 

 
 
 

 

 
 
 

1
2π

exp −
x2

2

2
 

 
 

 

 
 

 

 
 
 

 

 
 
 
 

which is just the product of two independent, standardized, Gaussian distributed random 
variables.  Therefore, inputting two, independent random variables     y1 , y2  from     U0,1 , two 
independent, Gaussian distributed random variables,     N0,1 can be generated. 

Acceptance-Rejection Sampling 
Assume that we wish to generate a sample from a probability density function     f (x ) , but 
for computational reasons the inversion or transformation methods are not practical.  
However, assume that a straightforward method exists for generating samples from a 
second, candidate probability density function     g( x)  where     f (x ) < Mg( x)  and M is any 
scalar multiplier.  Then to generate a sample from     f (x )  the following procedure can be 
used (see Figure B.1): 

1. generate a random deviate, x, from 
    g( x)  

2. sample     u = U0,1  

3. Accept x as sample if 
    
u <

f (x )
Mg( x)

 

else return to Step 1 

A small value of M is desired since the 
number of samples that must be generated 
until an acceptable sample is generated 
follows a geometric distribution with mean 
M.  The efficiency of the algorithm is also 
sensitive to the choice of g(x), i.e.  the closer g(x) bounds f(x) the more efficient the 
sampling procedure.   

Example 
Given a random variable x with probability density function (Beta): 

    f (x ) = xα −1(1− x) β −1 α ,β ≥ 1 

The bounding distribution, g(x) is distributed    U0,1 . The multiplier is then defined: 

    
M =

(α − 1)α −1(β − 1) β −1

(α + β − 2 )α +β −2  

The Metropolis-Hastings algorithm discussed in the main body is a variation of the above 
rejection sampling method.  However, rather than accepting/rejecting x as independent 
samples from a desired distribution, the generated sample must depend on a previous 
value.  The resulting set of samples constitutes a Markov process.   

 
 

Figure B.1. Rejection Sampling  
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